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ABSTRACT  

A methodology is presented that allows aerosol particle size data to be used to indicate when an abnormal
aerosol event may be occurring.  Such data can be collected from an array of commercially available particle
counter-sizers. The methodology employs two main elements: a detection element that recognizes when an
aerosol concentration spike event is occurring; and a classification element that classifies aerosol events as
normal (e.g. dust kicked up by wind gust or generated by normal vehicular activity) or abnormal (e.g.
mistakenly released non-indigenous aerosol material). The detection element is based on observation of
statistically significant rises in the aerosol concentration level, during an appropriate time interval. The
classification element uses a new three dimensional feature space that highlights relevant differences in the
aerosol particle size distribution function. The classifier adapts to the local environment by learning the
region of the feature space that is occupied by normal aerosol events. Observations which then fall
significantly outside this region are classified as abnormal. The methodology was developed using a set of
atmospheric aerosol data containing over 600,000 observed aerosol particle size distributions, under both
normal conditions, and with intentionally introduced abnormal aerosol. An implementation of the
methodology is described. Many abnormal aerosol events in the data set are demonstrated to be
distinguishable from normally occurring aerosol events.
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I.  INTRODUCTION

Every place has its own normally occurring aerosols.  While there can be significant fluctuations in the
aerosol constituents, concentration levels, and size distribution, the aerosol at a given location has some
persistent characteristics. Much of the aerosol occurring at a location originates indigenously in the vicinity
(e.g. particulate or pollen picked up by the wind or stirred up by local activity, or local industrial or
vehicular aerosol sources). Other site-dependent components of the local aerosol depend on the prevailing
atmospheric and meteorological conditions.

In a variety of situations, the presence of an abnormal aerosol -- an aerosol that does not belong to the
locale—is indicative of danger or could be a cause for concern. In these situations, the capability to rapidly
detect the presence of the abnormal aerosol could have immense value.

Among the simplest devices for characterizing aerosols in-situ is the light-scattering particle sizer-counter.
These shoe-box sized, self-contained, commercially available (e.g. Met One Instruments, Inc.) sensors
collect air through an intake port and pump it through a laser cavity. As aerosol particles pass through a
small laser beam, a detector voltage, which depends on the detected intensity of scattered light, indicates the
scattering cross-section, and thus the size, of the particle. In a matter of a few seconds, the sensor can
determine the ambient concentration of aerosol particles in several size bins. This physical characterization
is much faster than chemical or assay-based characterization.
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In this paper, we present a methodology to detect abnormal aerosols using an array of particle counter-
sizers. The raw concentration data is first filtered to remove measurement noise and irrelevant high-frequency
concentration fluctuations. The data filtering process generates best estimates of time-averaged
concentrations, with both short and long time-scales. A detection element is used to indicate the presence of
an aerosol event. It responds to significant rises in the overall aerosol concentration that occur within
appropriate time bounds.

Underlying the methodology is a transformation of the particle count data into a feature-space in which
abnormal aerosols can be distinguished from normal aerosols. A classifier element indicates the likelihood
that the aerosol is not a normal part of the local environment. The classifier responds to abnormalities in
the aerosol particle size distribution.

Adaptation is an essential element of the methodology, for two reasons. First, the characteristics of normal
aerosol vary greatly with place and time, so any detection method must adapt to the local background
aerosol conditions. In addition, the characteristics of normal aerosol will undergo changes during operation,
at time scales ranging from a half hour to weeks. The classifier has to adapt to these changes in order to
maintain detection power without giving false positives.

The methodology is applicable to a single sensor, as well as to a detection system employing an array of
sensors. For a multiple-sensor system, the abnormality of the aerosol is evaluated independently at each
sensor, and a data fusion element is used to combine the sensor results. The data fuser looks for correlated
events on different sensors, and includes a treatment of how the wind blows aerosols across the array.

In summary, the essential elements of the methodology are 1) data filtering to remove measurement noise
and high frequency process noise, and to characterize recent and background concentrations 2) detection of
concentration spike events, 3) transformation of filtered data to a feature space suitable for distinguishing
relevant distribution function differences 4) characterization of the normal aerosol by adapting a partition in
the feature space 5) determination of when a feature is sufficiently abnormal to trigger a detection, 6) data
fusion of multiple sensors.

The methodology was developed using actual aerosol data. This data was collected simultaneously by twelve
sensors, and consists of concentration measurements taken every 10 seconds in six different particle size
bins. The data was collected over 25 nights, with typically seven hours of operation per night. Normal local
conditions prevailed during much of the data collection, but there were also 75 instances when non-
indigenous aerosols were intentionally introduced upwind of the sensor array. This data was instrumental in
developing the feature space. It also allows the methodology to be assessed by the traditional performance
measures of false positive rates and detection probabilities.

The particle size distribution function has been found to contain information that allows some abnormal
aerosol events to be distinguished from normal aerosol events.

2. THE AEROSOL TEST DATA

Two data collection campaigns were conducted in the Utah desert, first during September of 1997, and again
in September of 1998. Aerosol concentration measurements were made with an array of twelve particle
counter-sizers  (Met One Instruments, Inc.), distributed over a square mile of flat desert. Each sensor
measured the concentration in six different size bins, at a rate of one measurement every 10 seconds. The
data collection system was operated for a total of 185 hours, over 25 different nights. A total of
approximately 2000 sensor-hours of data were collected, resulting in a database with more than 600,000
aerosol concentration profile records. In addition, the wind speed and direction was recorded every 10 seconds
at each sensor location.

Normal local conditions prevailed during the bulk of the data collection, but there were also 75 instances
when non-indigenous aerosols were intentionally introduced upwind of the sensor array. The normal local
conditions include vehicular activity. This is the only existing data with multiple-particle-size aerosol
concentration data from multiple sensors, that include both ambient conditions and intentional releases of
non-indigenous aerosol.
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The raw aerosol detector data consists of the number of particles counted during a sampling period, in each
of six particle size bins. The factory pre-set particle size bins are 1 to 2µm, 2 to 4µm, 4 to 6µm, 6 to
8µm, 8 to 10µm, and 10µm and larger. For each measurement, the air is sampled for 9 seconds, at a
volumetric flow rate of 0.1 cubic feet per minute. The particle counts are converted to concentrations
(dividing counts by the 0.42475 liters per sample). The air inlets were located at a height of five feet above
the ground.

As an example, the raw concentration data observed by sensor 6 is shown in Fig. 1, for the night of Sept.
15, 1998. This is just one out of 300 sensor-nights in the database, and will be used as a typical example in
the rest of the paper. The time is labeled in hours of Sept. 15, with continuation after midnight, so that, for
example, 2:00 a.m. on Sept. 16 is shown as 26:00 hours of Sept. 15. The data begins at 8:18 p.m. MDT
on Sept. 15, 1998, and ends at 6:02 am, Sept. 16. There are a total of 3441 data records collected by sensor
6 on this night. The data from 60 measurements were lost during radio transmission from the sensor to the
data collection point, but on no occasion were more than two consecutive data records dropped. The average
aerosol concentration (of particles one micron and larger) was 466.0 particles per liter of air (pla), although
instantaneous concentration values range from 40 to 40,000 pla. The average particle size distribution is as
follows: 60.3% in the 1 to 2 µm, 35.4% in the 2 to 4 µm, 3.64% in the 4 to 6 µm, 0.417% in the 6 to 8
µm, 0.091% in the 8 to 10 µm, and 0.087% at 10 µm or larger. While the average over the whole night of
the fraction of particles in the 1 to 2 µm size bin was 60.3%, for individual measurements, this fraction
ranges from 43% up to 100%.
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Figure 1. Raw data from Sensor 6, for the night of September 15-16, 1998, showing concentration of 2 to 10 µm
aerosol particles. The arrows indicate the occurance of intentionally introduced non-indigenous ae rosol.

During the night of Sept. 15, 1998, there were five intentional releases of aerosol upwind from the sensor
array. These releases are indicated by arrows in Fig.1. The aerosol concentration rise attributable to these
releases is clearly visible in the sensor 6 data for the first four of these releases, but the fifth release barely
registers. There are also many aerosol concentration spikes visible in Fig. 1, that were generated by
vehicular activity and atmospheric phenomena. Similar behavior is seen in the data of all 12 sensors on all
25 nights. We look for a methodology that allows detection of as many intentional releases as possible,
without giving false positives on the normally occurring spikes.
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3. NOISE REMOVAL

The raw concentration data is corrupted by measurement noise and high-frequency process noise. Any
discriminant will be more powerful if spurious noise can be removed from the data. The measurement noise
is predominately shot noise, which is particularly significant for the larger size bins. The high-frequency
process noise comes from small aerosol clouds, less that 30 meters in extent. These localized fluctuations
in the aerosol will affect one observation, while not appearing in the previous or subsequent observation. It
is assumed that these fluctuations do not carry information of interest.

Before the raw data is used, these two sources of noise are partially removed by filtering the data with
recursive exponential filters. These filters have an adjustable time-scale, so that recent and background, or
short, medium, and long time-scale filters can be implemented. An exponential filter with time-scale of τ
gives a filtered value of  x(t) = z(t')e− (t − t' ) /∑ e−( t −t ' ) /∑ , where z(t’) is the raw concentration

measurement taken at time t’, and the sums extend over all data points collected prior to time t. This
exponential filter has been implemented in an efficient recursive form. When a new data value is obtained,
an update equation is used to revise the filtered value:

xn +1 = xn + Kn+1(zn+1 − xn ) ,

where the gain, K, is determined by the age of the previous update and the prior value of the gain:

Kn+ 1 = Kn Kn + e− (t n+1 − tn ) /( ) .

Prior to the first data point, the gain is set to unity, so that the filter will give the value of the first data
point after it arrives.

A measure of validity of the filtered value can be derived from the gain. When the gain is high, the current
filtered value is accorded a low confidence relative to the next observation. In that case,  the current filtered
value is not be considered a valid representative of the true underlying value. Each filter has an associated
threshold value, Kmax. Whenever the associated gain, K,  exceeds  this threshold, the filtered value is treated
as invalid, and no decisions will be made in the algorithm using that value. The approach for setting Kmax is
based on the intuitive requirement that there must be N successive valid data before the filtered value will be
considered. For data arriving every 10 seconds, the valid gain threshold is given

by Kmax = 1− e−10 t /( ) 1− e−10 Nt /( ) . This approach then accounts for data drop outs in a way that

discounts older data appropriately. This recursive exponential filter has been found to give better results than
simple moving averages or a non-adaptive Kalman filter.

4. DETECTION OF AEROSOL CONCENTRATION SPIKES

The task of detecting abnormal aerosol events can be broken into the two sub-tasks of 1) detecting aerosol
events and 2) classifying them into normal and abnormal. A simple approach, using the 2 to 10 µm data is
used to determine when an aerosol event is occurring at the sensor. Recursive exponential filters are used to
define three filtered values: x2-10, xB2-10, and σ2

2-10. The first of these, x2-10, gives the recent concentration in
the 2 to 10 µm particle size range. It is obtained with an exponential filter with a 60 second time scale,
using the sum of the second through fifth size bin raw concentration data. This noise-removed concentration
is shown in Fig. 2. Comparison with Fig. 1 shows that the aerosol spike events remain in the filtered data,
while the high-frequency noise is greatly reduced. As with the raw data, concentration spikes occur during
normal conditions, as well as when aerosols are intentionally introduced.

The second filtered quantity, xB2-10,  is a 4 minute exponential filter of 2 to 10 µm particles. The third
filtered quantity, σ2

2-10,  keeps a running estimate of the variance of the difference between x2-10 and xB2-10. It
is obtained with a fifteen minute recursive exponential filter of the square difference between recent and
background concentrations:

210
2 (t) = [x210(t' ) − x210

B (t' )]2 e− (t − t' ) /∑ e−( t −t ' ) /∑ .
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These three filtered values are used in a simple methodology to indicate when a concentration event is
occurring. When the recent concentration exceeds the background concentration by a significant amount, a
concentration event is occurring. The significance of the rise can be quantified by the parameter χ:

= x2−10 − x2−10
B( ) / 2−10

2 + 400 . This parameter is plotted in Fig. 3, as a function of time, for the

data collected by sensor 6 on September 15, 1998.
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Figure 2. Recent concentration in the 2 to 10µm range, obtained with a  60 second exponential filtering of the raw
data from sensor 6, on the night of September 15, 1998.

When this significance measure exceeds 1.5, an aerosol event is considered to be occurring. This condition

can be specified as x2 −10 > x2−10
B +1.5 2−10

2 + 400 . This ensures that the recent concentration exceeds

the longer-term concentration by a significant amount, with significance being measured in terms of the
variance of this deviation. When the standard deviation (of recent concentration minus background
concentration) is very small, this condition imposes a requirement that the recent concentration be at least
30 particles per liter above the background concentration. This prevents situations with small concentration
rises following quiescent periods from generating spurious spike indications. The spike detector requires a
significance of 1.5 times the standard deviation, in the more typical case wherein the standard deviation is
much larger than 20 particles per liter of air.

There are two other conditions that must be met for the spike detector to indicate the presence of a spike.
First, if these three filtered values are not all valid, the spike detector will not act. All three filtered values
must be valid. The equivalent of eight consecutive valid data points are required for the recent and
background concentrations to be valid, and the equivalent of ten consecutive valid recent and background
concentrations must occur for the variance to be considered valid. The other condition is that  x2-10 > 100.0
particles per liter of air.

For the ten nights of data collected in 1998, this spike detection formulation indicates the presence of a
concentration spike after 8280 of the 302,704 total data records. The spike detector alone can thus reject
over 97% of all observations as candidates for abnormal aerosol events. This is an important part of holding
the false positive rate down.
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Figure 3. The significance of concentration rise, χ, for data from sensor 6, September 15, 1998.

A more sophisticated event detection methodology has also been developed, which makes two significant
improvements on the simple formulation presented above. First, the concentration of the first principal
component of the variation in the six particle size channels can be used instead of the concentration in the 2
to 10 µm range. Second, instead of fixing a hard threshold at 1.5 times the standard deviation, the statistics
of the deviations can be accumulated and fit to a power law. The threshold can then be determined for a
desired false positive rate. This more sophisticated method has been found to be superior to the simple
method presented here, but its development was not completed.

5. REPRESENTATION OF PARTICLE SIZE DISTRIBUTION DEVIATIONS

Aerosol event detection alone is insufficient, since normal aerosol events produce spikes in the aerosol
concentrations. A means of classifying normal aerosol events from abnormal aerosol events is thus required.
Abnormal aerosols presumably could exhibit an arbitrary particle size distribution function, so the classifier
can not simply look for certain distribution functions. A representation is required that highlights the
difference of the particle size distribution from that of the local ambient background aerosol.

Although there are six particle size data channels, there appears to be only four meaningful channels. This
can be seen by looking at the principal components of the variation of the six concentration channels. The
principle components are the eigenvectors of the six by six covariance matrix. The first four principal
components describe smooth trajectories in the 6-D concentration space, indicating the existence of a real
underlying phenomena. The last two principle components, those with the smallest eigenvalues, are noisy,
changing direction and eigenvalue rapidly. They therefore do not represent anything physically meaningful.
We thus look for four information-bearing state variables, one that characterizes the overall concentration,
and three more that characterize the shape of the particle size distribution function.

The noise is removed from the raw data with a four minute exponential filter, before the process of
characterizing the size distribution function. Figure 4 shows these 4-minute filtered bin concentrations for
the 2 to 4, 4 to 6, 6 to 10, and 10+ µm particle size bins. The 6 to 8 and 8 to 10 µm bins have been
combined into one bin. The 1 to 2 µm data is ignored.
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Figure 4. The 4-minute exponentially filtered aerosol concentration by particle size bin. The top line shows 2 to 4
µm. The second line down, shown as grey, gives the 4 to 6 µm range. The third line down, shown as heavy black,
gives 6 to 10 µm. The lowest line shows 10 µm and larger. This data is from sensor 6, taken on the night of
September 15, 1998.

When the observed concentration in one size bin is plotted against that of another size bin, a discriminant
becomes apparent. Figure 5 shows the trajectory followed by the 4-minute filtered data in the 2-D plane
defined by the concentration of 6 to 10 µm size particles, and the concentration of 4 to 6 µm size particles
(again, illustrating with the sensor 6 data from September 15, 1998). An important observation is that the
aerosols generated by vehicular activity tend to lie on the same lines as the ambient atmospheric aerosols,
even though they show high concentration spikes. In this figure, two of the five intentionally released
aerosols generate trajectories that are easily differentiated from those of normally occurring aerosol. Similar
behavior can be observed in the 2-D plane formed by other pairs of size bins, and of course for other sensors
and other nights.

Two simple bin-ratio formulations have been discovered that quantify differences in the bin-pair plane
trajectories. A “slope” formulation characterizes, for example, the distribution function shape at around 6
µm by the ratio of concentration in the 6 to 10 µm range to the concentration in the 4 to 10 µm range:
s6=x6-10/x4-10. The “hat” formulation characterizes, for example, the distribution shape at around 8 µm by the
ratio of concentration in the 6 to 10 µm range to the concentration in the 4 µm and larger range:
h8=x6-10/x4+. These feature variables take a value from 0 to 1. Fig 6 shows h8 for the data collected by sensor
6 on September 15, 1998.
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Figure 5. Trajectory described by the data from sensor 6, collected September 15, 1998, in the plane of 6 to 10 µm
concentration vs. 4 to 6 µm concentration, using 4-minute exponential filter on the data

The first and fourth intentional aerosol releases stand out clearly in Fig. 6, because they attain values for h8

that are significantly higher than any attained by normally occurring aerosols. There is one exception where
the normal aerosol briefly shows a high value of h8, but this spike is not accompanied by a rise in the total
concentration level.

The shape of the distribution function can be characterized at other particle sizes, as well.  We characterize
the distribution at around 5 µm by using h5 = x4-6/x2-10. Likewise, the shape of the distribution function at
around 10 µm can be characterized by the feature variable s10 = x6-10/x6+. Figure 7 shows all data points in
the feature space plane defined by h8 and h5, from sensor 6 on September 15, 1998. The points occupied by
normal local aerosols are shown as gray circles, while the points generated by intentionally released aerosols
are shown as black diamonds. It is apparent that some abnormal aerosols can be easily discriminated from
normal aerosols based on differences in particle size distribution. In particular, the first and fourth releases
on September 15, 1998 are clearly abnormal, as observed by sensor 6.
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Figure 6. A derived feature variable, h8, given by the ratio of 4-minute filtered concentration of particles in the 6
to 10 µm size range to that in the 4 µm and larger size range. Data shown is for sensor 6, Sept 15, 1998.
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5. ALGORITHMS FOR DETECTING ABNORMAL AEROSOL

The details of implementation of detection algorithms based on this methodology are beyond the scope of
this paper, but an overview of an example detection algorithm scheme is provided. The algorithm uses the
spike detector described in section 3, and two classifiers, based on representations of the distribution
function described in section 4. The slope-deviation classifier uses change in the slope characterization of
the distribution at around 6 µm. The feature-space classifier identifies significant deviations in the 3-D
feature space composed of the three feature variables h5, h 8, and s10.

For the feature-space classifier, each data record, after filtering, translates to a point in the 3-D feature space.
There is a region in this 3-D feature space which is associated with normal aerosols. The boundary of this
region forms a surface which can be described as a height in the s10 direction, as a function of location in the
2-D h5-h8 plane. Points beneath this boundary surface (i.e. lower values of s10) are associated with normal
aerosol.

The feature vector is evaluated only when the spike detector element indicates the presence of an aerosol
event, and when the relevant filtered values are valid. When a feature vector occurs that is significantly
outside of the normal aerosol region, it will be classified as an abnormal aerosol. The determination of
whether a state vector is anomalous is based on a simple geometric distance in the 3-D state space, of the
new vector from the boundary surface of the normal aerosol region. If this new point is below the normal
aerosol region, or within a distance of 0.064 of it, the new point is considered too close to the historically
observed values to be treated as anomalous. Otherwise, the new feature vector is declared to be anomalous,
showing a completely different particle size distribution than has been seen by the sensor.

The normal aerosol region can not be updated immediately after data is received. This would be making use
of information that will not be available in a deployed system: whether or not there is abnormal aerosol
present. When a concentration observation is made, it may not be known for some time (e.g. 45 minutes),
whether the aerosol is normal. Only if it is normal, should the data be used to modify the normal region of
feature space. The data is used immediately to determine whether it is sufficiently anomalous to indicate
abnormal aerosol. The feature vector derived from the data is then stored in a delay line. They pop out of the
delay line after 45 minutes have elapsed. At that time, it can presumably be determined if the aerosol was
normal, and whether to adapt the normal aerosol region in the feature space.

The boundary of the normal aerosol region in the 3-D feature space is continually adjusted as feature vectors
pop out of the delay line. To a point (h8, h 5, s10) in the feature space, we define a block-shaped region
consisting of that part of the feature space from the origin up to the point. All points with smaller values
of all three variables are added to the normal aerosol region, if they are not already there.

When a sensor is initially set up, it will take some time to learn the region of the feature space that will be
occupied by normal aerosols. Typically, a 10 hour training period is sufficient. This method of learning the
normal aerosol region from data provides robustness against sensor calibration differences. When a sensor is
shut down, the boundary of the normal aerosol region is saved to a file, so that it can be restored when the
sensor is restarted.

The slope-deviation classifier looks for significant increases in the slope of the particle size distribution
function at around 6 µm. The quantity d6=x6-10/x4-10 - (K xB6-10 – KB x6-10)/ (K xB6-10 – KB x6-10) is used to
characterize the change in the slope of the distribution function at around 6 µm, of the recent distribution
relative to the background distribution. In this formulation, x gives the four-minute filtered concentrations,
and xB gives a 30-minute background concentration. The gain of the four-minute filter, K, and the 30
minute filter, KB, are used to form a “lagged” background filter. The quantity d6 is only evaluated if the
recent and background filtered concentrations are valid, and the spike detector indicates the presence of an
aerosol concentration spike. The denominators are obtained by adding the 4 to 6 micron concentration and
the 6 to 10 micron concentration.

Several criteria must be satisfied before the slope-deviation classifier will indicate an abnormal aerosol. To
ensure that the concentration values are statistically significant, the background concentration of 4 to 6
micron particles must be at least 2 particles per liter of air, and the recent concentration of 4 to 10 micron
particles must be at least 15 particles per liter of air. Note that a concentration of 2 particles per liter of air
would correspond to less than 1 aerosol particle count per sample. A second criteria ensures that the
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derivative at smaller particle size is consistent with that at 6 microns, while a third criteria causes the
classifier to ignore aerosol events with exceedingly large fraction of very large particles, which are known to
be local events, since the large particles would settle out from aerosols of distant origin.

When d6 exceeds a threshold, the derivation deviation classifier will indicate that a non-ambient aerosol is
present. The threshold is determined by adaptation to the local conditions. Each sensor keeps a threshold
value dmax. Whenever a value d6 is obtained that is larger than dmax, the value of dmax will be increased to d6 if
it is subsequently verified that the data were collected during normal aerosol conditions. As with the feature-
space classifier, a 45 minute delay line is used for this purpose. The threshold is set at 0.02 when the
sensors are first set up in a new environment. This approach gives a degree of automatic calibration. The
actual threshold used to make the decision is a combination of the individual sensor threshold and the
highest threshold currently in place over the whole array of sensors, designated dhighestMax. When d6 exceeds
0.5 * (dmax + dhighestMax) by a margin of 0.03, the aerosol is classified as abnormal.

The results of the feature-space classifier from each sensor are fused by the simple expedient of requiring
wind-correlated detections of abnormal aerosol events from at least two sensors. The slope-deviation
classifier will trigger on a single sensor. Both classifiers can effectively turn themselves off in
environments where they would otherwise give false positives.

6. RESULTS

There were 75 intentional aerosol releases during the data collection. Of these, 11 occurred before the
sensors had 10 hours of background data to train on. Of the remaining 64 releases, the algorithm described
above was able to correctly classify 38 intentional release events as abnormal aerosols. In addition, the
algorithm never misclassified any of the numerous normal aerosol event as abnormal.

7. LIMITATIONS

There are several circumstances in which this methodology  would be ineffective for detecting the presence
of abnormal aerosols. Since this approach requires a characterization of the normal aerosol, it wouldn’t be
effective for applications  in which sufficient training time is unavailable. For the particular data set used to
develop the methodology, it was found that a ten hour training period was required to sufficiently
characterize the background region of the feature space. Other locales may require more or less time. If the
normally occurring aerosol does not occupy a well-defined region of the feature space (as it did with the data
employed here), the methodology would not work. If the abnormal aerosols of interest were to be
intentionally tailored to match the normal aerosol, the methodology would not provide any classification
power. When the abnormal aerosol is present in such small quantities as to disappear into the noise of the
normal aerosol concentration, the spike detector would not be activated, and the methodology would never
even look at the feature space discriminant. The detectable concentration of abnormal aerosol  using
implementations based on the methodology  depends on the (presumably unknowable)  distribution
functions of the normal and abnormal aerosols, as well as the level of fluctuations in the normal aerosol
concentration.  Estimates of the expected sensitivity of the methodology  can not therefore be reliably made
without recourse to unjustifiable assumptions.

8. CONCLUSIONS

A new way of looking at the problem of abnormal aerosol detection has emerged, in which the task is
divided into  three simpler, understandable parts. The first part is to determine when an aerosol event is
occurring. The second part is to determine if the particle size distribution is anomalous relative to what has
been seen locally. The third is to fuse data from multiple sensors.

A very simple approach is used for aerosol event detection. It uses only the deviation of the recent
concentration of 2 to 10 µm size particles from background levels, with significance based on the observed
variance of this deviation. A more elaborate spike detection approach, using principle components of the
variations, would perform somewhat better.

Transformation of the concentration by size bin into characterizations of the shape of the particle size
distribution at several sizes is a novel and successful discovery of this effort. Several ratio formulations
have been found to characterize the particle size distribution function at a given size. These ratios are very
simple to implement, and are well suited to the multiple size bin form of the data. Both the hat formulation
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(i.e. the ratio of the concentration of 4 to 6 micron particles to the concentration of 2 to 10 micron
particles) and the slope formulation (i.e. the ratio of the concentration of 4 to 6 micron particles to the
concentration of 2 to 6 micron particles) are found to provide useful characterization of the particle size
distribution around a particular particle size. Both of these ratio formulations have the advantage of ranging
from 0 to 1. These ratios can be formed from recent bin concentrations and compared to the same ratios
formed from background bin concentrations. Alternatively, the ratios formed from recent concentrations can
be compared to the historical ratios seen previously at a sensor during normal aerosol conditions. These
ratio formulations have a physical interpretation which provides a great advantage over more abstract
mathematical constructs.

The adaptive capability of the algorithm is clearly essential to a system that can be taken anywhere at any
time. The adaptive approach used by the algorithm appears to be successful. The fundamental idea of the
adaptive approach is to discriminate abnormal from normal aerosols, while updating the region occupied by
normal aerosols in a feature space. The observations are transformed into a feature space in which the
discrimination is performed. The data corresponding to normal aerosols fall in a region of the feature space,
which is gradually defined as data is collected. Detection of abnormal aerosol is based on the feature vector
of an observation falling significantly outside this region. This adaptive approach allows classifiers to
effectively shut themselves off in a location where they would give false positives. This provides a
framework for extending the generality of the algorithm, by combining additional classifiers that focus on
different features and discriminants. The effectiveness of classifying aerosol events according to whether the
particle size distribution belongs to the locale, has been demonstrated for  identifying abnormal aerosols.


